
Algorithms and Programming I

Lecture#1

Spring 2015

CS 61002 Algorithms and Programming I

• Instructor : Maha Ali Allouzi

Office: 272 MSB

Office Hours: T TH 2:30:3:30 PM

Email: mallouzi@kent.edu

3

1/15/2015

The Course

• Course Goal: the course is for Student with little or no prior
programming Experience. in which an introduction to the algorithms
and tools used in computer ; it include programming in a high level
languages (PYTHON and C++)

• Textbook: many online books are on the class website

www.cs.kent.edu/~mallouzi

http://www.cs.kent.edu/~mallouzi

The Course

• Grading policy:
• Homework & Quizzes: 20%

o Assignment details will be given at the time assigned, and will be posted on the class
website

o Late Assignments will not be accepted .

o There will be a Quiz at the time you turn your assignment on.

• Exam 1: Feb,5th 3:45-5:00 pm 25%

• Exam 2: Mar5th 3:45-5:00 pm 25%

• Final: May 6th 7:45-10:00 am 30%

The Course

• Grading scale:

93% <= A <= 100 90%<= A-<93%

87% <= B+ <90 83% <= B <87% 80% <= B- < 83%

77% <= C+ <90 73% <= C <77% 70% <= C- < 73%

67% <= D+ <90 63% <= D <67% 60% <= D- < 63%

0% <= f < 60%

The Course

• Format
• Two lectures/week

• Programming Assignments
there will be around 10 assignments in the semester

• Two tests + final exam.

Cheating

In short: don't do it!
If caught cheating, you will fail this course!!

8

1/15/2015

Module 1: introduction to Algorithms

• Module Goal: a rigorous introduction to the design and analysis of
algorithms

• Textbook: Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
• An excellent reference you should own

Algorithms

Definition of Algorithm:

-An algorithm is a procedure for solving a mathematical problem in a
finite number of steps.

- A step by step method for solving some task.

Example 1

How to get to School in the morning
• Different ways with same start and end

Algorithm 1: walking
1. Walk out the front door and lock it.

2. Walk 3 miles.

3. Enter the department building.

Example 2

Algorithm 2: Bicycle
1. Walk out front door and lock it

2. Unlock bicycle , put on helmet.

3. Ride bicycle for 3 miles.

4. Lock up bicycle, take off helmet.

5. Enter department building.

Example 3

Algorithm 3: bus

1. Walk out front door and lock it.

2. Walk half a mile to the bus stop.

3. Ride the bus.

4. Walk to the office.

5. Enter office building.

Example 4

Algorithm 4: Taxi

1. Call taxi company.

2. Walk out front door and lock it.

3. Ride the taxi for miles.

4. Enter the department building.

Compare Algorithms

Walking Bicycle Bus Taxi

free cheap cheap expensive

Compare Algorithms…

Walking Bicycle Bus Taxi

slow Medium Medium fast

Pseudocode

• Pseudocode is an informal high-level description of the operating
principle of a computer program or other algorithm. It uses the
structural conventions of a programming language, but is intended for
human reading rather than machine reading.

17

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

18

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 10 40 20

1 2 3 4

i = j = key =

A[j] = A[j+1] =

19

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 10 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10

20

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30

21

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30

22

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = A[j+1] = 30

23

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = A[j+1] = 30

24

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = A[j+1] = 10

25

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 10

A[j] = A[j+1] = 10

26

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 40

A[j] = A[j+1] = 10

27

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 40

A[j] = A[j+1] = 10

28

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

29

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

30

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

31

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40

32

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

33

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

34

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20

35

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20

36

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

37

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

38

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

39

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

40

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

41

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30

42

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30

43

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30

44

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30

45

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 20 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20

46

1/15/2015

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 20 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20

Done!

Analysis of Algorithms

Analysis of Algorithms: is the theoretical study of computer program performance
and resource usage.

• Study how to make things fast.

• In programming …What is more important than performance?
1. Correctness
2. Simplicity
3. Maintainability
4. Robustness of the software
5. Security.
6. Modularity .
7. Scalability
8. User friendliness !

• Why study algorithm and performance if it is at the bottom of the
heap?

Performance
1. measure the line between the feasible and the unfeasible if its is not fast enough

its simply not functional. Or if it uses too much memory its simply not going to
work

2. Correlated with user friendliness (waiting !!!)

Asymptotic Performance

• In this course, we care most about asymptotic performance
• How does the algorithm behave as the problem size gets very large?

• Running time

• Memory/storage requirements

• Bandwidth/power requirements/logic gates/etc.

Running Time

• Number of primitive steps that are executed
• Except for time of executing a function call most statements roughly require

the same amount of time

• We can be more exact if need be

• Worst case vs. average case
(best case is ….)

Insertion Sort

Statement Effort
InsertionSort(A, n) {

for i = 2 to n { c1n

key = A[i] c2(n-1)

j = i - 1; c3(n-1)

while (j > 0) and (A[j] > key) { c4T

A[j+1] = A[j] c5(T-(n-1))

j = j - 1 c6(T-(n-1))

} 0

A[j+1] = key c7(n-1)

} 0

}

T = t2 + t3 + … + tn where ti is number of while expression evaluations for the ith for loop iteration

Analysis

• Simplifications
• Ignore actual and abstract statement costs

• Order of growth is the interesting measure:
• Highest-order term is what counts

• Remember, we are doing asymptotic analysis

• As the input size grows larger it is the high order term that dominates

Upper Bound Notation

• We say InsertionSort’s run time is O(n2)
• Properly we should say run time is in O(n2)

• Read O as “Big-O” (you’ll also hear it as “order”)

• In general a function
• f(n) is O(g(n)) if there exist positive constants c and n0 such that f(n) c g(n)

for all n n0

• Formally
• O(g(n)) = { f(n): positive constants c and n0 such that f(n) c g(n) n n0

Insertion Sort Is O(n2)

• Proof
• Suppose runtime is an2 + bn + c

• If any of a, b, and c are less than 0 replace the constant with its absolute value

• an2 + bn + c (a + b + c)n2 + (a + b + c)n + (a + b + c)

• 3(a + b + c)n2 for n 1

• Let c’ = 3(a + b + c) and let n0 = 1

• Question
• Is InsertionSort O(n3)?

• Is InsertionSort O(n)?

Practical Complexity

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

0

1000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

f(n) = n

f(n) = log(n)

f(n) = n log(n)

f(n) = n 2̂

f(n) = n 3̂

f(n) = 2 n̂

Practical Complexity

1

10

100

1000

10000

100000

1000000

10000000

1 4 16 64 256 1024 4096 16384 65536

Other Asymptotic Notations

• A function f(n) is o(g(n)) if positive constants c and n0 such that
f(n) < c g(n) n n0

• A function f(n) is (g(n)) if positive constants c and n0 such that
c g(n) < f(n) n n0

• Intuitively,

 o() is like <

 O() is like

 () is like >

 () is like

 () is like =

